
General announcements

1.) 



There is a rotational counterpart for every translational concept and para-
meter out there.  So what can we say about the energy content of a rotating disk?

More Minutia: Rotational Inertia 
and the Moment of Inertia

2.)

Moved a distance    units from the center of a 
disk rotating with angular velocity     and you will 
find the      mass       moving with translational 
velocity    .  It’s kinetic energy calculates as:
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To get the total kinetic energy for the entire 
mass, this process has to be done for all the 
masses with the results summed, or.
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Noting that            , we can rewrite that summation 
yielding:
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Comparing this to                             leaves us with ½ and a velocity term 
squared, and a mass related term in parentheses.

KE = 12 m( )v2

This mass-related term is                    .  It is called moment of inertia. It is 
always defined relative to an axis and it is the rotational counterpart to mass 
. . . which is to say, it is a relative measure of a body’s resistance to changing its 
rotational motion, or its rotational inertia.
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Moment of inertia
The form ∑ 𝑚!𝑟!" is clearly meant for point masses. For example, imagine two 
equal masses at the end of a rod of length L.

1. Determine the moment of inertia about the central axis for the set-
up shown below.  Assume the rod is massless and the masses equal in 
magnitude.   

central 
axis

L

m m
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Moment of inertia
2.  Determine the moment of inertia about an axis through one of the 
masses as shown.  Assume the rod is massless and the masses equal in magnitude.   

axis of  
interest

L

m m
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Moment of inertia

axis of 
interest

L

m m

L

3.) Determine the moment of inertia about an axis a length L units to 
the left of the left mass.  Again, assume the rod is massless.   

Parting shot: The moment of inertia gets bigger and bigger as you get farther 
and farther away from the body’s center of mass.
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m1 = 3kg

Example 2: Consider two masses m and 3m located a distance 1.0 meter apart.  
Relative to the coordinate axes shown:

 

Iy = mi xi( )2∑
     = m1 x1( )2 + m2 x2( )2

     = 3 kg( ) −.25 m( )2 + 1 kg( ) .75 m( )2

     = .75 kg i m2

a.) Determine the moment of inertia about 
the y-axis through the x-axis center of mass:

7.)

m2 = 1kg

x1 = −.5 x2 = .5

y

x

m1 = 3kg m2 = 1kg

x1 = −.25 x2 = .75

y

x

b.) Determine the moment of inertia about 
the y-axis as shown:

 

Iy = mi xi( )2∑
     = m1 x1( )2 + m2 x2( )2

     = 3 kg( ) −.5 m( )2 + 1 kg( ) .5 m( )2

     = 1.0 kg i m2



Notice the moment of inertia about the center of mass is smaller than about the 
other axes denoted.  This is always true.       is always a minimum.

 

Iy = mi yi( )2∑
     = m1 + m2( ) y1( )2

     = 3 kg+1 kg( ) 2 m( )2

     = 16 kg i m2

c.) Determine the moment of inertia 
about the x-axis:

8.)

m1 = 3kg m2 = 1kg

x1 = .25 x2 = 1.25

y

x

y1 = 2So what is this approach asking you to 
do?  It is asking that you begin at the axis 
of interest, proceed outward until you run 
into some mass, multiply the mass by the 
distance-out-quantity-squared, and sum 
all those quantities up.  For this problem, that will look like:

Note:  The closer a body is to an axis of rotation, the 
smaller its moment of inertia is about that axis.

Icm

I1

I2
I1 > I2



Reminders about moment of inertia
The moment of inertia is the rotational counterpart to mass.

– Mass is a measure of inertia: more mass means more resistance to 
acceleration. 

– For a rotation, the distribution of mass about the axis of rotation is what 
matters in terms of resisting angular acceleration
• An object has a given amount of mass--that doesn’t change, but its moment of 

inertia may be different about different rotational axes (e.g. about one end vs. 
through center of mass)

When mass is farther from the axis of rotation, the moment of inertia 
increases.

– Solid disk vs a hoop with the same mass: which has greater I?

The hoop: the mass is concentrated farther out from the axis of rotation (through the 
center of the disk/hoop).  (For your information, Ihoop = MR2 whereas Idisk = ½ MR2)

This means the disk will angularly accelerate more quickly for the same applied 
torque.
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Things To Know About I
Every object has a moment of inertia expression that allows you to determine its 
rotational inertia about a particular axis. A greater moment of inertia means it’s 
harder to change the object’s rotation motion (just like more mass means it’s harder 
to accelerate an object).

These expressions can be derived using calculus. This is not something you will 
be tested on. 

– You should know that the general form for moment of inertia for a point 
mass is mr2 (where r is the distance between the axis of rotation and the 
location of the point mass)

– If there are multiple point masses, you just sum their individual I’s.
– For more complicated shapes, you’ll be given the I for that shape (or given 

everything else and asked to find it—see table on next slide).
If you know the moment of inertia about an axis thru the center of mass and 
need one about a parallel axis, use the Parallel Axis Theorem (three slides down):

𝐼#$%$&&'& = 𝐼() + 𝑀𝑑"
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The table from Fletch’s
book is shown to the right.

22b
.)

M

Ithincylinder =MR
2

just as we surmised.  You will 
not be required to derive any of 
these quantities, but you will be 
expected to know what to do 
with them in a problem when 
they are provided.  

There is a similar table in the 
Open Stax textbook for the 
class.  Notice that the moment of 
inertia of a hoop (which is just a 
very short, thin cylinder) about 
its central axis is quote as:



Where does I come from for a disk?

So the moment of inertia is: r

dr

Disk of mass “m”, radius “R” and 
thickness “t.”

Example of derivation of 
moment of inertia for a 
continuous mass--NOT 
something you will be 
tested on!
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Parallel axis theorem
Sometimes, we know the moment of inertia about the center of mass, but we 
need to figure out what it is about a different rotational axis (e.g. around one end 
of a rod). To do this, we use the parallel axis theorem.

The Parallel Axis Theorem states that if you know the moment of inertia 
about the center of mass (Icm) and want to know it about a different axis that is a 
distance d away:

For example, the moment of inertia about the center of mass of a uniform rod 

of length L is *
*"
𝑀𝐿". The moment of inertia about one end is then:  𝐼'+, =

*
*"
𝑀𝐿" + 𝑀 -

"

"
= *

.
𝑀𝐿"

𝐼#$%$&&'& = 𝐼() + 𝑀𝑑"
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Rotational N2L -- Full Form
Putting it all together, we now can say:   

∑ 𝜏 = 𝐼𝛼

In words: the angular acceleration of an object depends on the net torque 
about the axis of rotation and the moment of inertia of that object about that 
same axis.  Put differently, the net torque on a body about a particular point is 
proportional to the body’s angular acceleration about that point, with the 
proportionality constant being the moment of inertia about that point.

Technically, torque and angular acceleration are vectors, so a direction is 
required. However, for all our problems, the plane of rotation will be in the 
page, so the unit vector will be assumed to be '𝑘. We won’t need to write that 
for these problems, but we will need to keep track of positive and negative 
signs to indicate the direction of rotation.
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N2L/I example (8.32)
For the system shown here, what torque around point O is required to produce 
an angular acceleration of 1.50 rad/sec/sec about:

– A) the x axis
– B) the y axis
– C) the z axis (out of the page)

6 m

4 m

2 kg

2 kg3 kg

4 kg

y

xO
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8.32 continued

6 
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4 
m

2 
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2 
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xO

We want to determine 𝜏 using 𝜏 = 𝐼𝛼, which means we 
need to find I for a rotation about the x axis. There are four 
point masses, so we need to sum their individual moments 
of inertia. Their distances (d) from the axis of rotation are 
therefore their y coordinates:

Now, using N2L:

𝜏 = 𝐼!𝛼 = 99 𝑘𝑔 ( 𝑚" 1.50
𝑟𝑎𝑑
𝑠"

= 149 𝑁𝑚
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8.32 continued
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For a rotation about the y axis, we do the same thing, 
but now we use each point’s x coordinate as their 
distances from the axis of rotation:

Now, using N2L:

𝜏 = 𝐼#𝛼 = 44 𝑘𝑔 ( 𝑚" 1.50
𝑟𝑎𝑑
𝑠"

= 66 𝑁𝑚
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8.32 continued
For a rotation about the z axis, we do the same thing, but 
finding each mass’s distance from the z axis (out of the 
page) requires finding the distance to O. Back to our trusty 
friend Pythagoras…

3 m

2 m

2 kg

2 kg3 kg

4 kg

y

x
O

So for the z axis:

And finally…

𝜏 = 𝐼$𝛼 = 143 𝑘𝑔 ( 𝑚" 1.50
𝑟𝑎𝑑
𝑠"

= 215 𝑁𝑚
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Our lab problem - with a twist! (literally..)
You’ve done a problem in which the tension keeps the rigid body stationary 
(your lab!).  What is the angular acceleration of the beam if the rope is cut, and 
what is the translational acceleration of a point at the end of the beam??  You may 
assume the moment of inertia about the beam’s center of mass is                  (we 
are leaving off the hanging mass to simplify this)

θ

T

φ

1
12( )ML2
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FBD and concepts

θ
V

H

L

mbeamg

Last time, all the torques were balanced as the 
tension force held the beam steady. Now, when 
the rope is cut, the beam will start to fall down 
and rotate clockwise.

H and V are once again through the axis of 
rotation, so they do not produce a torque. We 
have two forces that do, so let’s sum the torques 
about the pin (this will eliminate our need to deal 
with H and V).  Using the moment-arm 
approach:

τpin :∑
            ±       r⊥         F  = ±Ipinα

            − L
2

cosθ
⎛
⎝⎜

⎞
⎠⎟

mg( ) = −Ipinα
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To find the angular acceleration, we need the moment of inertia about the pin.  
Unfortunately, what we have is I about the beam’s center of mass.  To get what we 
need, we will use what is called the Parallel Axis Theorem:  

Remember that “d” in this equation is the distance 
between the axis through the center of mass and the 
axis through the point you are interested in.  In the 
case of our ladder problem, the distance between the 
ladder’s center of mass and the pin is “L/2,” so in this 
case, that is “d.”

The Parallel Axis Theorem states that if you want the moment of inertia about an axis 
PARALLEL to an axis through the center of mass that you know the moment of inertia 
for, you can get the new moment of inertia by taking the center of mass moment of inertia 
and adding a fudge factor equal to the object’s mass times the distance D between the two 
parallel axes squared, or: Axis thru

c.of m.
axis

secondary

distance d
between

axes

mass M

Isecondary = Ic.of  m. + Md2
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For our ladder problem, remembering that its moment of inertia about its center of 
mass is given, we can write:

Iend =       Icm     + M   d2

     = 1
12

ML2⎛
⎝⎜

⎞
⎠⎟
+ M L

2
⎛
⎝⎜

⎞
⎠⎟

2

     = 1
3

ML2

and our Newton’s Law expression becomes:

τpin :∑
            − L

2
cosθ

⎛
⎝⎜

⎞
⎠⎟

mg( ) = −Ipinα

            − L
2

cosθ
⎛
⎝⎜

⎞
⎠⎟

mg( ) = − 1
3

mL2⎛
⎝⎜

⎞
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α

         ⇒        α = 3
2L

cosθ
⎛
⎝⎜

⎞
⎠⎟

g( )
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As for the translational acceleration of a point on the beam, we an use:

a = rα

We want the translational acceleration of a point all the way down the beam at its 
end.  Remembering that the acceleration relationship stated above measures “r” 
from a “fixed point,” (which in this case would be the pin), r = L for our situation 
and we can write:

a = rα
  = Lα

  = L
3

2L
cosθ

⎛
⎝⎜

⎞
⎠⎟

g( )
  = 3g

2
cosθ

In summary: Use N.S.L., rotational style (sum of the torques, etc.); calculate 
the right moment of inertia using the parallel axis theorem if needed; use            if 
required.

a = rα
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Ball rolling down an incline
Determine the acceleration of the ball as it rolls down the incline.  Assume you 
know the incline’s angle, the ball’s mass and radius, and assume its moment of inertia 
about its central axis is 

θ

I = 2
5( )mR2

How does a ball roll? Something 
must be required to allow it to rotate 
about the point of contact – that 
means keeping the point of contact 
motionless as the ball rotates around 
it. What could do that?
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Ball rolling down an incline

mg

x
y

N

Ffs

θ

Fx :∑
     − mg sinθ + f = − ma

For the acceleration of the center of mass, 
the translational version of N.S.L:

Γcm :∑
     (f)(R) = Icm  α

     ⇒   (f)(R) = 2mR2

5
⎛
⎝⎜

⎞
⎠⎟

 a
R

⎛
⎝⎜

⎞
⎠⎟

     ⇒   (f) = 2m
5

⎛
⎝⎜

⎞
⎠⎟

 a( )

For the angular acceleration about the 
center of mass, the rotational version of N.S.L:

Σ𝜏/0 :
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Combining, we get:

−mg sinθ + f = − ma

    ⇒    − mg sinθ + 2
5

ma = − ma

       ⇒      mg sinθ  = 7
5

ma

           ⇒      a = 5
7

g sinθ  

But wait! There’s another way! What if we found the angular acceleration about 
the contact point?

If we were to sum the torques about the 
contact point (which is, instantaneously, a 
fixed point), we would get (see next page 
for justification):

Γp(contact  point) :∑
     (mg)(R sinθ) = Ip  α
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Alternate Balling rolling Problem
Γp(contact  point) :∑

     (mg)(R sinθ) = Ip  α

Note:       is the shortest distance between 
the “line of force” and point about which 
torque is being taken . . . 

r⊥

mg

N

f

y x

θ r

r⊥ = Rsinθ

To finish this off, we need to know the 
moment of inertia about the contact point “p”
and the relationship between the acceleration 
of the center of mass and the angular 
acceleration of the ball about the contact point.

Ip = Icm +md2

=
2
5
mR2 +mR2

=
7
5
mR2

Using the Parallel Axis Theorem, we can 
write:

From previous page:
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With the moment of inertia from the parallel axis theorem and the known 
relationship between the angular acceleration and the acceleration of the center of 
mass, we can write:

Γp :∑
     (mg)(R sinθ) = Ip  α

         ⇒     (mg)(R sinθ) = 7
5

mR2⎛
⎝⎜

⎞
⎠⎟

 a
R

⎛
⎝⎜

⎞
⎠⎟

                ⇒     a = 5
7

mg sinθ

Σ𝜏#:

We get the exact same answer, which makes sense as no matter what the 
axis of rotation, the angular acceleration of the object about itself should be the 
same.

𝑎 =
5
7
𝑔𝑠𝑖𝑛𝜃

The moral of the story is that in almost all of these problems, you can attack 
from the perspective of the center of mass or from a fixed point, pure rotation 
perspective.
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Atwood machine problem
A mass m1 is attached to a rope that is threaded 
over a massive pulley and attached to a second mass 
m2.  If the pulley’s mass is “M,” its radius “R” and its 
moment of inertia about its center of mass is 0.5MR2, 
determine both the angular acceleration of the pulley 
and the acceleration of each of the masses.

To start: think about what assumptions we made 
in the past in order to do this problem. Why did we 
do that? Can we still make those assumptions now?
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To get a feel for the intricacies of this problem, 
let’s do it first on the assumption the the pulley is 
NOT massive.  In that case, Newton’s Second 
Law applied to each mass and we can write:

T− m1g = m1a
   ⇒    T = m1g + m1a

f.b.d. on m1 :

So:
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Notice that we are able to assume the 
tension on both sides of the pulley is the 
same.  This is the consequence of the fact 
that the pulley is assumed to be massless.  

If that hadn’t been the case, a net 
torque would have been required to make 
the pulley rotate.  That could only come if 
the tension forces on either side of the 
pulley were imbalanced.

f.b.d. on m2:

So:

From the previous page,                    
so we can write:

T( )− m2g = −m2a
   ⇒    m1g + m1a( )− m2g = −m2a

   ⇒    a = m2 − m1

m1 + m2

g
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Now let’s look at the situation assuming the 
pulley is massive.  In that case, the only 
difference is that the tensions are different on 
either side of the pulley (this has to be so so the 
torque sum about the pulley’s center of mass is 
not zero).  Writing, we get:

f.b.d. on m1 :

So:

32.) 



f.b.d. on      :

So:

At this point, we have three unknowns, the two tensions and the acceleration 
“a.”  We need another equation.  ENTER SUMMING THE TORQUES ABOUT 
THE PULLEY’S CENTER OF MASS.  

m2
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f.b.d. on pulley (ignoring 
forces at the pin):So:

At this point, we have FOUR unknowns, the two tensions, the acceleration “a” 
and the angular acceleration 𝛂.  Once again, we need another equation.  That 
relationship connects the angular acceleration about the pulley’s center of mass to 
the translational acceleration of a point on the pulley’s edge (this will be the same 
as the translational acceleration of the string and, hence, the masses).  In other 
words, we need:  

acm = Rα

Σ𝜏;<:

Has to be negative because 
it’s rotating clockwise!
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We now have four equations:

Equ. A Equ. B

Equ. C Equ. D

Substituting Equ. A, B and D into C, we get:

Note that with the exception of the presence of the “M” term, this is exactly the 
same relationship you got with the massless pulley analysis.

2
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General Information
• Quiz 3 on rotational N2L and moment of inertia is on the xxx.  On it, you 

should be able to:
– Draw/label FBD for a rotating object
– Determine torque (using any method) about axis of rotation and sum 

torques if needed (though you won’t be required to use one approach over 
another, so get good with one approach and be prepared to use it!)

– Use N2L rotationally to solve for angular acceleration (Σ𝜏 = 𝐼𝛼)
– If need be, use N2L translationally to solve for acceleration (               )
– Know how to relate angular acceleration to translational acceleration
– Know how to find the moment of inertia for a point mass (mr2), or given 

the moment of inertia for another object, use parallel axis theorem
– Basically, be able to solve a problem like one of the three we’ve done 

in class (ball rolling down incline, rotating beam, Atwood machine). 
You’ll see one of those three.

F∑ = ma
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